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Abstract. The longitudinal and transverse nuclear magnetic relaxation rates 1/T1(T ) and 1/T2(T ) are
calculated for three- and two-dimensional (3D and 2D) metallic ferro- and antiferromagnets (FM and
AFM) with localized magnetic moments in the spin-wave temperature region. The contribution of the one-
magnon decay processes is strongly enhanced in comparison with the standard T -linear Korringa term,
especially for the FM case. For the 3D AFM case this contribution diverges logarithmically, the divergence
being cut at the magnon gap ω0 due to magnetic anisotropy, and for the 2D AFM case as ω−1

0 . The
electron-magnon scattering processes yield T 2 ln(T/ω0) and T 2/ω

1/2
0 -terms in 1/T1 for the 3D AFM and

2D FM cases, respectively. The two-magnon (“Raman”) contributions are investigated and demonstrated
to be large in the 2D FM case. Peculiarities of the isotropic 2D limit (where the correlation length is very
large) are analyzed.

PACS. 76.60.-k Nuclear magnetic resonance and relaxation – 75.30.Ds Spin waves

1 Introduction

Nuclear magnetic resonance (NMR), which is one of
most powerful tools for investigating various physical
properties, has a number of peculiarities for magnet-
ically ordered materials. Last time, a number of new
classes of magnets have been studied by this method,
e.g., heavy-fermion compounds [1], ferromagnetic films
and monolayers [2], low-dimensional systems including
copper-oxide perovskites [3], etc. Thus the problem of
theoretical description of various NMR characteristics of
magnets is topical again. This problem was already a sub-
ject of great interest since the 50-60s when the inter-
action of nuclear magnetic moments with spin waves in
localized-spin Heisenberg model was studied [4,5]. How-
ever, this model is inadequate to describe the most in-
teresting systems mentioned above where the role of
conduction electrons is essential in magnetic properties.
Usually the data on the longitudinal nuclear mag-
netic relaxation rate 1/T1 (this NMR characteristic is
probably most convenient to compare experimental re-
sults with theoretical predictions) are discussed within
itinerant-electron models such as Hubbard model or phe-
nomenological spin-fluctuation theories. Ueda and Moriya
[6,7] calculated the dependences 1/T1(T ) for weak itiner-
ant magnets, especial attention being paid to the param-
agnetic region, and obtained strong temperature effects.
Later this approach was extended to the two-dimensional
case and extensively developed in connection with high-Tc
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superconductors and related compounds [8,9]. On the
other hand, in a number of systems (e.g., in most rare-
earth compounds which are also a subject of NMR inves-
tigations, see, e.g., Refs. [10]) the s-d(f) exchange model
with well-separated localized and itinerant magnetic sub-
systems is more adequate. Magnetic properties in such a
situation differ essentially from those in the paramagnon
regime (see, e.g., discussion in Refs. [11,12]). At the same
time, the contributions to nuclear magnetic relaxation rate
owing to electron-magnon interaction are not investigated
in detail.

In the present work we obtain the dependences of
1/T1(T ) and the linewidth 1/T2(T ) in the spin-wave re-
gion for three- and two-dimensional (3D and 2D) metal-
lic magnets with well-defined local magnetic moments. In
Section 2 we discuss the general formalism and physical
picture of hyperfine interactions. In Sections 3 and 4 we
calculate various contributions to the relaxation rates in
metallic ferro- and antiferromagnets. In Section 5 we an-
alyze the isotropic 2D case where at finite temperatures
the long-range order is absent, but the correlation length
is very large.

2 Hyperfine interactions

We start from the standard Hamiltonian of the hyperfine
interaction [13]

Hhf = hI, hα = AαβSβ (1)
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Â being the hyperfine interaction matrix, which contains
the Fermi (contact) and dipole-dipole contributions,

Aαβ = AFδαβ +Adip
αβ . (2)

The Fermi hyperfine interaction is proportional to the
electron density at the nucleus and therefore only s-states
participate in it, the contribution of core s-states (which
are polarized due to local magnetic moments) being much
larger than of conduction electrons. It is just the con-
sequence of considerably smaller localization area (and
therefore higher density on nuclei) for the core states.

The dipole contribution to Hhf can be represented
as [13]

Hdip
hf =

a

2

([
1
6

(I+S− + I−S+)− 1
3
IzSz

]
F (0)

+ I+S+F (2) + 2(IzS+ + I+Sz)F (1)

)
+ h.c. (3)

where

F (0) = 〈(1− 3 cos2 θ)/r3〉,
F (1) = 〈sin θ cos θ exp(−iφ)/r3〉,

F (2) = 〈sin2 θ exp(−2iφ)/r3〉, a = −3
2
γeγn. (4)

Here 〈...〉 is the average over the electron subsystem states,
γe and γn are gyromagnetic ratios for electron and nu-
clear moments, respectively. In the case of the local cubic
symmetry we have F (a) = 0. It is obvious that magnetic
f - or d-electrons dominate also in dipole interactions be-
cause of large spin polarization. Hence the direct interac-
tion of nuclear spins with that of conduction electrons can
be neglected in magnets with well-defined local magnetic
moments. Nevertheless, conduction electrons do effect nu-
clear relaxation via their influence on the local-moment
system; besides that, as we shall see below, such contri-
butions possess large exchange enhancement factors. The
investigation of these effects is one of the main aims of
this work.

A general way to consider all these contributions is
using the Green’s function method which leads to the fol-
lowing expression for the longitudinal nuclear magnetic
relaxation rate [14]

1
T1

= − T

2π
Im
∑
q

〈〈h+
q |h−−q〉〉ωn/ωn, (5)

1
T2

=
1

2T1
− T

2π
lim
ω→0

Im
∑
q

〈〈hzq|hz−q〉〉ω/ω (6)

(ωn = 〈hz〉 � T is the NMR frequency). As follows
from (3),

h− = (AF +
1
3
aF (0))S− + aF (2)S+ + 2aF (1)Sz, (7)

hz = (AF − 2
3
aF (0))Sz + a(F (1)S+ + aF (1)∗S−). (8)

Then we derive
1
T1

=
T

2

([
(AF +

1
3
aF (0))2 + a2|F (2)|2

]
K+−

+ 2a(AF +
1
3
aF (0))ReF (2)K++ + 4a2|F (1)|2Kzz

)
(9)

1
T2

=
1

2T1
+
T

2

(
(AF − 2

3
aF (0))2Kzz + a2[2|F (1)|2K+−

+ (F (1))2K++ + (F (1)∗)2K−−]
)

(10)

where the quantities Kαβ are defined by

Kαβ = − 1
π

lim
ω→0

Im
∑
q

〈〈Sαq |S
β
−q〉〉ω/ω. (11)

As we shall see below in Section 5, ωn 6= 0 which enters (9)
(but not the second term of (10)) may become important
in the case of very small magnetic anisotropy.

Formula (5) has a rather general character. On the
other hand, the problem of calculating the NMR linewidth
is much more complicated. The Moriya formula (6) is in
fact applicable only in the case where the line has the
Lorentz form (i.e., characteristic frequency of hyperfine
field fluctuations is large in comparison with their am-
plitude) [13]. In insulating crystals the latter condition
is usually violated, the lineform being close to Gaussian
with the width determined by dipole interactions of nu-
clear spins. At the same time, in metals the Korringa re-
laxation described by the formula (6) usually dominates,
so that we will use this. A peculiar case is provided by
conducting systems which are on the borderline of ferro-
or antiferromagnetic instability (i.e. with large correlation
length ξ), e.g., copper-oxide superconductors [15]. Under
this condition, the anisotropic Ruderman-Kittel interac-
tion between nuclear spins turns out to be greatly en-
hanced and dominates over the dipole interaction. The
lineform turns out to be Gaussian with the width being
estimated as

1
T2
∝ A2

∑
q

χ2(q, ω = 0) (12)

where χ(q, ω) is the dynamical spin susceptibility of elec-
tron system. We will use this result in Section 5 when
discussing 2D systems which do possess large correlation
length.

3 Ferromagnetic metals

We proceed with the s-d(f) exchange model Hamiltonian

H =
∑
kσ

tkc
†
kσckσ − I

∑
iαβ

Siσαβc
†
iαciβ

+
∑
q

JqS−qSq +Ha (13)
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where tk is the band energy, Si and Sq are spin-density
operators and their Fourier transforms, σ are the Pauli
matrices, Ha is the anisotropy Hamiltonian which results
in occurrence of the gap ω0 in the spin-wave spectrum. For
convenience we include explicitly in the Hamiltonian the
Heisenberg exchange interaction with the parameters Jq,
although really this may be, e.g., the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction. It should be noted
that similar results may be reproduced for the localized-
moment Hubbard magnets (cf. [11,16]).

First we consider the ferromagnetic (FM) case. Then
K++ = 0 and the relaxation rates (9, 10) are the sums
of transverse (∝ K+−) and longitudinal (∝ Kzz) terms.
Passing to the magnon representation we obtain

〈〈S+
q |S−−q〉〉ω = 2S/[ω − ωq + iγq(ω)] (14)

where ωq = 2S(Jq − J0) + ω0 is the magnon frequency,
γq(ω) ∝ ω is the magnon damping. Then we have

K+− = 2S
∑
q

γq(ωn)
πωnω2

q

(15)

(cf. Refs. [11,17]). The damping in the denominator of (15)
can be neglected for both localized-moment and itinerant-
electron magnets (in the latter case the expression (14)
corresponds to the RPA structure, see Ref. [11]) due to
smallness of ωn. On the contrary, temperature depen-
dences of magnetization, resistivity, etc. in weak itinerant
magnets are just determined by the damping in the de-
nominator, i.e. by paramagnon excitations rather than by
spin waves [7].

The damping owing to the one-magnon decay pro-
cesses is given by the well-known expression

γ(1)
q (ω) = −2πI2S

∑
k

(nk↑ − nk−q↓)

× δ(ω + tk↑ − tk−q↓)

' 2πI2Sωλq (16)

where tkσ = tk − σIS, tk is referred to the Fermi level,
nkσ = n(tkσ) is the Fermi function,

λq =
∑
k

δ(tk↑)δ(tk−q↓). (17)

The linearity of spin fluctuation damping in ω is the
characteristic property of metals. According to (9) this
leads to T -linear contributions to 1/T1 which is the
Korringa law [18]. Note that the simplest expression for
the Korringa relaxation

1/T1 ' 1/T2 ' A2ρ↑ρ↓T, (18)

where A is an effective hyperfine interaction constant, ρσ
are the partial densities of electron states at the Fermi
level, is practically never applicable for magnetic metals
(e.g., exchange enhancement factors can change even the
order of magnitude of 1/T1 [7,17]). Accurate expression

for the “Korringa” contribution in the case under consid-
eration can be derived by the substitution (15) and (16)
into (9).

The damping (16) has the threshold value of q, which
is determined by the spin splitting ∆ = 2|I|S, q∗ = ∆/vF

(vF is the electron velocity at the Fermi level). The quan-
tity q∗ determines a characteristic temperature and energy
scale

ω∗ = ω(q∗) = D(q∗)2 ∼ (∆/vF)2TC (19)

with D the spin-wave stiffness.
Besides 3D magnets, consideration of the 2D case is

of interest (this may be relevant, e.g., for layered magnets
and ferromagnetic films; for more details see Sect. 5). We
have

λq = θ(q − q∗)×
{

(qvF)−1, D= 3
1
π (q2v2

F −∆2)−1/2, D= 2.
(20)

After integration for the parabolic electron spectrum (q∗
plays the role of the lower cutoff), the one-magnon damp-
ing contribution to (15) takes the form

δ(1)K+− =
ρ↑ρ↓
D2m2

×
{

1/4, D= 3
1/(πq∗), D= 2

(21)

with

ρσ =
mΩ0

2π
×
{

kFσ/π, D= 3
1, D= 2

(22)

m the electron effective mass, Ω0 the lattice cell volume
(area). Thus in the 3D case the factor of I2 is canceled,
and the factor of I−1 occurs in the 2D case and we ob-
tain a strongly enhanced T -linear Korringa-type term (re-
member that D ∼ J ∼ I2ρ for the RKKY interaction).
This means that the contribution of conduction electrons
to T -linear relaxation rate via their interaction with lo-
calized spins is indeed much more important than the
“direct” contribution (18): perturbation theory in the s-d
exchange coupling parameter I turns out to be singular.
Earlier such contributions (for the 3D case) were calcu-
lated by Weger [19] and Moriya [20] for iron-group metals.
However, Moriya has concluded that for these materials
they are not important in comparison with orbital cur-
rent contributions. In the case under consideration (where
magnetic subsystem is well separated from the conductiv-
ity electrons) the situation is different and the spin-wave
contribution in 1/T1 is normally the most important.

The one-magnon decay contribution (21) is absent for
so-called half-metallic ferromagnets, e.g., some Heusler al-
loys, where electron states with one spin projection only
are presented at the Fermi surface [17,21]. In such a situa-
tion we have to consider two-magnon scattering processes.
In this connection, it is worthwhile to note an important
difference between relaxation processes via phonons and
via magnons. The main difference is due to the gap in
magnon spectrum. Usually ω0 > ωn and therefore one-
magnon processes contribute to the relaxation rate due
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to magnon damping only (cf. discussion of the phonon-
induced relaxation processes in Ref. [13]). However, the
mechanisms of magnon damping in magnetic dielectrics
(magnon-magnon interactions) are different from those in
magnetic metals and degenerate semiconductors [12,22].

The damping in a conducting ferromagnet owing to
electron-magnon (two-magnon) scattering processes is
calculated in references [11,22] and has the form

γ
(2)
q (ω)
ω

= πI2
∑
kpσ

(
tk+q − tk

tk+q − tk + 2σIS

)2

× (ωp − ω)
∂nkσ

∂tk

∂Np

∂ωp
δ(tk − tk−p+q) (23)

where Np = N(ωp) is the Bose function. Substituting this
into (15) and performing integration we obtain for D= 3

δ(2)K+− =
Ω0T

1/2

128π2Sm2D7/2

∑
σ

ρ2
σ

×
{

3π1/2ζ(3
2 )T, T � ω∗

8M3ω
∗, T � ω∗

(24)

where ζ(z) is the Riemann function,

M3 =
∫ ∞

0

dx
[

1
x2
− x2 expx2

(expx2 − 1)2

]
' 0.65. (25)

The contribution (24) should play the dominant role in the
half-metallic ferromagnets [17]. Besides that, this contri-
bution may modify considerably the temperature depen-
dence of 1/T1 in “usual” ferromagnets, a crossover from
T 5/2 to T 3/2 dependence of the correction taking place.

For D= 2 at T, ω∗ � ω0 small magnon momenta of
order of (ω0/D)1/2 make the main contribution to (15).
To calculate the integral one can use the high-temperature
expression for Np = T/ωp. As a result, one gets

δ(2)K+− =
Ω3

0kFM2

8π4SD5/2ω
1/2
0

T (26)

with

M2 =
∫ ∞

0

dx
1 + x2

π/2∫
0

dϕ sin2 ϕ(
sin2 ϕ+ x2

)3/2
=
∫ ∞

0

dy

[
1 +

y2√
1 + y2

ln

√
1 + y2 − 1

y

]
' 1.23.

(27)

Thus in the 2D FM case, in contrast with 3D one, the re-
laxation rate 1/T1 is strongly dependent on the anisotropy
gap.

Consider now the second term in the transverse re-
laxation rate 1/T2(T ) (10), which is normally determined
by Kzz, and the longitudinal contribution to relaxation
rate 1/T1 in (9), which is due to dipole-dipole interactions

with the characteristic constant Ã ∼ a|F (1)|. The simplest
calculation from the longitudinal Green’s function for the
localized-spin subsystem gives

〈〈Szq|Sz−q〉〉ω =
∑
p

Np −Np−q

ω − ωp−q + ωp
, (28)

Kzz =
∑
qp

(
−∂Np

∂ωp

)
δ(ωq − ωp). (29)

The quantity (29) has been considered in references
[5,23] as a contribution to the NMR line width 1/T2. The
integration in the 3D case gives the logarithmic singularity

Kzz =
Ω2

0

16π4D3
T ln

T

ω0
· (30)

For D= 2 this singular term is inversely proportional to
the magnetic anisotropy parameter and very large:

Kzz =
(
Ω0

4πD

)
2N(ω0) '

(
Ω0

4πD

)
2 T

ω0
, T � ω0. (31)

For small enough ω0 and Ã ∼ A this contribution can
dominate over the “Korringa” contribution (21) in 1/T1

at T > ω0/|Iρ|. The leading contribution to Kzz from the
s-d interaction is determined by

δ〈〈Szq|Sz−q〉〉ω = 2I2S
∑
kpσ

1
(σω + ωp−q − ωq)2

× nk↓(1− nk+p−q↑) +Np(nk↓ − nk+p−q↑)
tk↓ − tk+p−q↑ + σω − ωp

· (32)

However, it is not singular in ω0 and practically never
important.

4 Antiferromagnetic metals

Now we consider the spiral antiferromagnetic (AFM)
structure along the x-axis with the wavevector Q

〈Szi 〉 = S cos QRi, 〈Syi 〉 = S sin QRi, 〈Sxi 〉 = 0.

We introduce the local coordinate system

Szi = Ŝzi cos QRi − Ŝyi sin QRi,

Syi = Ŝyi cos QRi + Ŝzi sin QRi, Sxi = Ŝxi .

Further we pass from spin operators Ŝi to the spin de-
viation operators b†i , bi and, by the canonical transfor-
mation b†q = uqβ

†
q − vqβ−q, to the magnon operators.

Hereafter we consider for simplicity two-sublattice AFM
ordering (2Q is equal to a reciprocal lattice vector, so that
cos2 QRi = 1, sin2 QRi = 0).

Calculating the Green’s functions to second order in
I (to second order in the formal quasiclassical parameter
1/2S, cf. Refs. [12,24]) we derive

〈〈bq|b†q〉〉ω =
ω + Cq−ω

(ω − Cqω)(ω + Cq−ω) +D2
qω

(33)

〈〈b†−q|b†q〉〉ω =
Dqω

(ω − Cqω)(ω + Cq−ω) +D2
qω

(34)
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with

Cqω = S(Jtot
Q+q,ω + Jtot

qω − 2Jtot
Q0) +

∑
p

[CpΦpqω

−(Cp −Dp)Φp00 + φ+
pqω + φ−pqω] + gq (35)

Dqω = Dq−ω = S(Jtot
qω − Jtot

Q+q,ω) +
∑
p

DpΦpqω + hq.

The s-d exchange contributions of the first order in 1/2S
correspond to the RKKY approximation

Jtot
qω = Jq + I2

∑
k

nk − nk−q

ω + tk − tk−q
(36)

(nk = n(tk) is the Fermi function), the second summand
in (36) being the ω-dependent RKKY indirect exchange
interaction. The function Φ, which determines the second-
order corrections, is given by

Φpqω = (φ+
pqω − φ−pqω)/ωp, (37)

φ±pqω = I2
∑
k

nk(1− nk+p−q) +N(±ωp)(nk − nk+p−q)
ω + tk − tk+p−q ∓ ωp

where

ωp = (C2
p −D2

p)1/2

= [4S2(Jp − JQ)(JQ+p − JQ) + ω2
0]1/2

is the magnon frequency to zeroth order in I and 1/2S.
The ω-independent corrections gq, hq that describe the
“direct” magnon-magnon interaction are written down in
references [12,24].

Now we consider the effects of electron-magnon inter-
action. The intrasubband one-magnon damping (which is
absent in the FM case) is finite at arbitrarily small q [25].
Similar to the FM case, the contributions of intersubband
transitions (which correspond to small |q−Q|) are cut at
the characteristic temperature and energy scale

ω∗ = ω(q∗) = cq∗ ∼ (∆/vF)TN . (38)

We have

K+− = −2S
π

lim
ω→0

Im
∑
q

ω−1Cqω/ω
2
q, (39)

and the term with K++ in (9) vanishes due to the property
Dqω = −Dq+Qω. The one-magnon contribution owing to
the imaginary part of (36) in the 3D case takes after inte-
gration the form

δ(1)K+− =
S2Ω0

π2c2

(
P0 ln

ωmax

ω0
+ PQ ln

ωmax

ω∗0

)
· (40)

Here c is the magnon velocity defined by ω2
p = ω2

p+Q =
ω2

0 + c2p2,

Pp = I2 lim
q→0
|q− p|

∑
k

δ(tk)δ(tk−q+p), (41)

(the quantity P0 depends, generally speaking, on the di-
rection of the vector q, see Refs. [7,26,27]), the second
logarithm in the brackets of (40) contains the cutoff

ω∗0 =
√
ω2

0 + (ω∗)2.

The “enhancement” factor in (40) is smaller than in the
FM case because of the linear dispersion law of magnons,
but this contribution still dominates over the “usual”
Korringa term (18). Besides that, a large logarithmic fac-
tor occurs (in the isotropic case, this is cut at ωn only).
Note that a similar logarithmic singularity in 1/T1 takes
place for 3D itinerant-electron antiferromagnets [6]. It is
interesting that the intersubband contribution does not
lead here to enhancing the singularity, unlike the situation
for the magnon damping, magnetic and transport proper-
ties [12,28]. Under the “nesting” conditions (tk+Q ' −tk
in a large part of the Fermi surface) the singularity is not
enhanced as well.

The singularity becomes stronger in the 2D case where
integration gives

δ(1)K+− =
S2Ω0

πcω0

(π
2
P0 + PQ arctan

ω0

ω∗

)
· (42)

This fact may be important when treating experimental
data on layered AFM metals.

The contribution owing to electron-magnon scattering
processes is determined by the imaginary part of the func-
tion (37). After a little manipulation we obtain

δ(2)K+− ' 2SL
∑

p→0,q

1
qω2

q+p

(
−∂Np

∂ωp

)
[P0 + PQφ̃(q)]

(43)

where L = 2S(J0 − JQ), φ̃(q < q∗) = 0, φ̃(q � q∗) = 1.
The integration in the 3D case yields

δ(2)K+− =
SLΩ2

0

8π4c4
[P0f(T, ω0) + PQf(T, ω∗0)] (44)

where

f(T, ω0) =
∫ ∞
ω0

dωω
(
−∂N(ω)

∂ω

)
ln
ωmax

ω

' T ln
T

ω0

(
ln
ωmax

ω0
− 1

2
ln
T

ω0

)
, T � ω0. (45)

Thus we have 1/T1 ∝ T 2 lnT. In the 2D case we derive

δ(2)K+− ' T SLΩ
2
0

4π4c4

(
P0 ln2 T

ω0
+ PQ ln2 T

ω∗0

)
, (46)

so that the singularity is not enhanced in comparison with
the 3D case.

The contributions owing to longitudinal fluctuations
will be estimated for the localized subsystem only. We
obtain

Kzz '
∑
pq

L2

2ω2
p

(
−∂Np

∂ωp

)
δ(ωq − ωp) · (47)
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The corresponding contribution to 1/T2 was considered in
reference [4]. The term in the longitudinal relaxation rate
determined by (47) is estimated as

δ(z)(1/T1) ∝ Ã2 ×
{

T 3/J4, D= 3
T 2/J3, D= 2.

(48)

Provided that the dipole-dipole contributions in (9) are
considerable (Ã ∼ A), this term can dominate over the
“Korringa” term (40) of order of A2I2ρ2T ln |J/ω0|/J2 at
T/|J | > |Iρ| ln1/2 |J/ω0| only. Note that this two-magnon
contribution is similar to the two-phonon (Raman) contri-
bution in the spin-lattice relaxation. The existence of the
gap ω0 is not important here (at least if it is sufficiently
small), but the matrix elements of interaction of nuclear
spins with magnons are singular, unlike those for acoustic
phonons (|Mq→0|2 ∼ 1/q instead of q). Therefore we have
a T 3 law instead of T 7 one for the phonon scattering [13].

5 Isotropic 2D case and NMR in layered
and frustrated magnets

Now we investigate the case of layered magnets, in particu-
lar, the isotropic 2D limit. A detailed treatment of the spin
correlation functions and corresponding spin-fluctuation
contributions to 1/T1 in the isotropic 2D Heisenberg an-
tiferromagnets with ωn → 0 was performed in refer-
ence [29]. Here we calculate also corrections owing to
electron-magnon interaction.

The magnetic ordering temperature is determined by
magnetic anisotropy or interlayer coupling,

TM ∼ |J |S2/ ln(|J |S2/max{ω0, |J ′|}) (49)

(for more details see, e.g., Refs. [30]). Despite the absence
of the long-range ordering (LRO) at finite temperatures,
spin-wave description holds even in the pure 2D isotropic
case in the broad temperature region up to T ∼ |J |S (i.e.,
TM → |J |S2) owing to strong short-range order (SRO).
In a more general case of finite ω0 and J ′, this descrip-
tion holds at T � TM. A possibility to describe LRO
without introducing anomalous averages (like sublattice
magnetization) in terms of singularities of the spin corre-
lation function was demonstrated in reference [31]. Such
an approach enables one to obtain an unified description
of ordered and disordered phases. In the pure 2D case the
magnetization (or sublattice magnetization for the AFM
case) S is replaced in both magnetic and electronic prop-
erties by the square root of the Ornstein-Cernike peak
(see, e.g., [32]). The gap in the effective spin-wave spec-
trum appears at finite temperatures, which is determined
by the inverse correlation length. The correlation length
in the situation under consideration is estimated as [33]

ξ ∝ exp
(
π|J |S2/T

)
. (50)

As shows the two-loop scaling theory [34], the preexponen-
tial factor is temperature independent; quantum effects
can renormalize the exchange parameter J [30].

To describe formally NMR in the absence of LRO
(〈Si〉 = 0) we follow to reference [31] and consider the
autocorrelation function of the nuclear spin I [35]. Per-
forming calculations with the simplest Hamiltonian Hhf =
AISi to second order in A we derive

(I+, I−)ω =
2
3
I(I + 1)[−iω +Σ(ω)]

with the memory function

Σ(ω) = A2

∫ ∞
0

dt exp(iωt)
∑
q

〈Sz−q(t)Szq

+
1
2
S−−q(t)S+

q 〉, (51)

〈Sα−q(t)Sβq 〉 =
∫ ∞
−∞

dω exp(iωt)J αβq (ω),

J αβq (ω) = − 1
π
N(ω)Im〈〈Sβq |Sα−q〉〉ω . (52)

As discussed in reference [32], the spectral density J αβq (ω)
contains an almost singular contribution

δJ αβq (ω) ∝ ∆q−Q∆ω (53)

where ∆q and ∆ω are delta-like functions smeared at
the scales q ∼ ξ−1 and ω ∼ ωξ with the characteris-
tic spin-fluctuation energy ωξ ∼ Dξ−2 (FM), ωξ ∼ cξ−1

(AFM). To obtain the singular term in Σ(ω) with the cor-
rect factor of S2 we can introduce a very small magnetic
anisotropy (which does not violate time-reversal symme-
try), so that the whole singular contribution passes to
Kzz

q (ω) (cf. Ref. [31]). Then the term iA2S2/ω occurs at
ω � ωξ, and we obtain the expression

(I+, I−)ω =
i
3
I(I + 1)

(
1

ω −AS +
1

ω +AS

)
(54)

which describes precession of the nuclear spin with both
frequencies ±AS. We see that the resonance picture holds
at ωn � ωξ only. In the opposite case the NMR line is
smeared, but we can calculate the quantity 1/T1 according
to (5).

Provided that ω0 � ωξ the quantity ωξ plays a role of
the gap in the magnon spectrum. Therefore at ωn � ωξ
the cutoffs in the singular contributions to 1/T1 described
by (42, 46, 31) are determined by very small inverse cor-
relation length, so that they have very large values and
possess unusual temperature behavior.

In the 2D FM case the expression (26) is also applica-
ble, but with another expression for ω0, ω0 → Dξ−2 which
is exponentially small. We have

δ(2)(1/T1) ∝ I2A2T 2/D5/2ω
1/2
ξ ∝ I2ω2

nξT
2/D3. (55)

In the isotropic 2D AFM case we obtain from (42)

δ(1)(1/T1) ∝ I2A2T/cωξ ∝ I2ω2
nξT/c

2. (56)

As follows from (46, 50),

δ(2)(1/T1) ∝ I2A2(T 2/c4) ln2 ξ ' const(T ). (57)
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Possibility to observe such dependences experimentally is
of great interest. Unfortunately, most experimental data
for layered compounds deal with copper-oxide systems
which are on the borderline of AFM instability. The latter
results in a specific temperature dependence of the spin
susceptibility and strong deviations from the Korringa
law. This makes separation of one- and two-magnon con-
tributions impossible.

At ωn � ωξ the cutoff in the singular contributions
to 1/T1 described by (42, 46, 31) is the NMR frequency
ωn. However, such a cutoff is absent for the correspond-
ing terms in 1/T2 owing to the interaction Ã ∼ a|F (1)|.
Provided that Ã ∼ A we reproduce for these terms the
dependences (55–57). However, as discussed in Section 2,
for large ξ the lineform turns out to be Gaussian owing
to strong Ruderman-Kittel interaction between nuclear
spins, the Moriya formula (6) is inapplicable, and one can
estimate the linewidth from (12). In the 2D case we ob-
tain 1/T2 ∝ ξ. A more detailed discussion of this situa-
tion and an application to copper-oxide systems is given in
reference [15].

We see that NMR investigations can be in principle
used to obtain the temperature dependence of the corre-
lation length. When crossing the magnetic ordering point
in layered systems the NMR picture should not change
radically. Formally, as follows from (49, 50) at T ∼ TM we
have ln ξ ' ln |JS2/max{ω0, |J ′|}|, so that the cutoffs are
joined smoothly.

A similar situation can take place for other systems
with suppressed LRO and strong SRO, e.g., for frustrated
3D magnetic systems [36] (where ξ is also large, the line-
form is Gaussian, and we obtain from (12) 1/T2 ∝ ξ1/2).
This may explain why the problem of detecting long-range
magnetic ordering is frustrated systems with small ordered
moments with the use of the NMR method so difficult. In-
deed, the NMR data for heavy-fermion systems are doubt-
ful and contradict to results of other experiments [1].

6 Conclusions

In the present paper we have investigated in detail vari-
ous mechanism of nuclear magnetic relaxation in metal-
lic ferro- and antiferromagnets in the spin-wave temper-
ature region. In the most cases the main contribution to
1/T1 is of Korringa type, but its physical origin is more
complicated than in paramagnetic metals. Formally, it re-
sults from the interaction of nuclear magnetic moments
with the localized electronic subsystem with taking into
account the “Stoner” (Landau) damping of spin waves
via conduction electrons. This contribution is greatly
enhanced in comparison with the standard Korringa
term by inverse powers of exchange interaction (s-d(f)
parameter), especially in ferromagnets. In 3D antiferro-
magnets such a contribution contains the logarithmic sin-
gularity which is cut at the gap in the magnon spectrum
(magnetic anisotropy energy) ω0. Thus we can conclude
that the “Korringa” relaxation rate in magnetic metals
should be much larger than in paramagnetic ones where

the relaxation is determined by direct interaction with
conduction electrons (such a term is also present in the
magnetically ordered state, but is much smaller than the
contribution discussed). In the 2D AFM case we have
1/T1 ∝ ω−1

0 . In the isotropic limit the singularity in 1/T1

is cut at very small inverse correlation length, so that
the one-magnon contribution becomes very large and pos-
sesses unusual temperature behavior.

Besides that, we have calculated contributions
from more complicated magnon damping processes
(electron-magnon scattering). For antiferromagnets and
2D ferromagnets they contain singular logarithmic or (in
the 2D FM case) power-law factors which are also cut at
ω0. These contributions may result in considerable devia-
tions of the temperature dependence of 1/T1 from the lin-
ear Korringa law. In the 3D FM case this contribution is
also noticeable and probably can be separated when fitting
experimental data. For half-metallic ferromagnets, where
the “Stoner” damping is absent, this scattering should be
the main nuclear relaxation mechanism (see the discussion
of experimental data in the review [17]).

Provided that the “longitudinal” matrix elements of
dipole-dipole hyperfine interactions in (9) are not too
small, the two-magnon (“Raman”) relaxation processes
may be also important in 1/T1, especially for 2D ferro-
magnets.

Part of this work was supported by the Nederlandse Or-
ganisatie voor Wetenschappelijk Onderzoek (NWO), project
047-008-16.
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